

A Theory of Unsupervised Translation Motivated by Understanding Animal Communication

Shafi Goldwasser David F. Gruber Orr Paradise Adam Tauman Kalai

Definition (γ **-ambiguities).** $\Theta_{\gamma}(\rho) \coloneqq \left\{ \theta \in \Theta : \underset{x \sim \mu}{\mathbb{P}} \left[\rho \left(f_{\theta}(x) \right) = 0 \right] \leq \gamma \right\}, \ \varepsilon_{\gamma}(\rho) \coloneqq \max_{\theta \in \Theta_{\nu}(\rho)} \left(\mathcal{L}(\theta) \right) \right\}$

Theorem: For any μ , f_* , ρ such that $\star \in \Theta_0(\rho)$, and δ , $\gamma \in (0,1)$. With probability $\geq 1 - \delta$, given $m \geq \frac{1}{\nu} \ln \frac{|\Theta|}{\delta}$ samples from μ , and prior ρ , MLE outputs $\hat{\theta}$ with $\mathcal{L}(\hat{\theta}) \leq \varepsilon_{\nu}(\rho)$.

Studying translatability in two stylized models of language

0-1 loss for
$$m$$
 samples: $\mathcal{L}_{01}(\hat{\theta}) = O\left(\max\left(\frac{1}{m}, \frac{1}{a^n}\right) \cdot \log|\Theta|\right)$

Assumption (Realizability). $\star \in \Theta_0(\rho)$

$$\mathcal{L}_{01}(\hat{\theta}) = O\left(\frac{\log n}{\alpha^2 d} + \frac{1}{\alpha} \sqrt{\frac{r \log n}{m}}\right)$$

