
A Mini-Course on Probabilistically Checkable Proofs

Orr Paradise∗

The 2018 Amos de-Shalit Summer School
Weizmann Institute of Science

Contents

I Sunday, September 2nd 2018 2

1 Prelude: Computation and Verification 2

2 Probabilistically Checkable Proofs 3

II Monday, September 3rd 2018 5

3 The geometry of Boolean functions 5

4 Multiplicative Boolean functions 6

III Tuesday, September 4th 2018 8

5 A connection: property testing 8

6 Testing and decoding the Hadamard code 8

IV Wednesday, September 5th 2018 11

7 Quadratic equations over the field of two elements 11

8 Constructing the PCP: from ideal to real 11

9 NP ⊆ PCP (poly, O (1)) 13

∗http://www.wisdom.weizmann.ac.il/~orrp/

1

http://www.wisdom.weizmann.ac.il/~orrp/


Part I

Sunday, September 2nd 2018
This course does not directly follow any specific textbook (and therefore all errors and omissions are the
teacher’s). Two great resources for additional reading (and studying complexity theory in general) are
[Gol08, AB09].

1 Prelude: Computation and Verification

What can be computed efficiently? This question stands at the heart of the field of computational complexity.
Complexity theorists aim to answer questions of this type, a famous example being ”If a solution for a problem
can be verified efficiently, can it also be found efficiently?”.

Definition 1.1 (NP). A language L is efficiently verifiable if there exists a Turing Machine V with the
following properties:

• Completeness: For all x ∈ L there exists a witness w of length polynomial in |x| such that V (x,w) = 1.

• Soundness: For all x /∈ L and any w it holds that V (x,w) = 0.

• Efficiency : V runs in polynomial time (both in x and in w, since their lengths are polynomially related).

We denote by NP the class of efficiently verifiable decision problems.

This the go-to definition of a proof, in the computational sense. While there are many ingenuous theories
and tantalizing open questions that build upon this basic object/proof-system, we argue that there are other
notions of proof-systems that are worth considering.

1.1 Randomness in computation (and verification)

In a previous course in algorithms you may have encountered the power of randomness in computation. For
example, randomized quicksort (choosing a pivot randomly) has significantly better worst-case complexity
than its deterministic version (O (nlogn) vs. O

(
n2
)
). Complexity theorists have not yet settled the matter

of how randomness affects the complexity of solving decision problems1. But what about verifying them?
This is exactly the idea underlying Probabilistically Checkable Proofs.

1.2 Decision problems, a (re)formality

Formally, a decision problem is a language L ⊆ {0, 1}∗, the ”problem” being to decide whether a certain
input string x ∈ {0, 1}∗ is a word in the language L (i.e. x ∈ L) or not. We will use a different formulation,
which is arguably more natural in the modern context.

Definition 1.2. A decision (promise) problem is a pair Π = (ΠYES,ΠNO) where ΠYES,ΠNO ⊆ {0, 1}∗ are
disjoint. ΠYES is referred to as the set of YES-cases and ΠNO is the set of NO-cases. The promise is the set
ΠYES t ΠNO, and the goal is to decide whether an input string from the promise is a YES-case or a NO-case.
That is: ”Given x ∈ ΠYES tΠNO, is x ∈ ΠYES?”

Sometimes, the promise simply allows us to ignore inputs that aren’t well-formed when designing our
algorithm: for example, when designing an algorithm for undirected graph Hamiltonicity, we can add the
promise that the input adjacency matrix is symmetric. This difference is indeed a syntactic one, and the
problem’s complexity remains the same. But other types of promises can make a big difference, as we will
see later.

1The question is ”If a problem can be solved by a probabilistic Turing Machine (with high probability), can it also be solved
efficiently by a deterministic Turing Machine?

2



2 Probabilistically Checkable Proofs

Without further ado, we introduce the lead actor in our play in four acts.

Definition 2.1 (PCP). A decision problem Π = (ΠYES,ΠNO) has a probabilistically checkable proof (PCP)
system using randomness complexity r (n) and query complexity q (n) if there exists a probabilistic Turing
Machine verifier V with the following properties:

• Completeness: For all x ∈ ΠYES there exists a proof π such that V π (x) = 1.

• Soundness: For all x ∈ ΠNO and any π, V π (x) = 0 with high probability (with probability at least
1/2).

• Efficiency : V runs in time polynomial in |x|, tosses r (|x|) random coins and queries π in q (|x|)
locations.

We denote by PCP (r, q) the class of decision problems that have a PCP system as above. For classes of
functions R and Q, let PCP (R,Q) :=

⋃
r∈R,q∈Q PCP (R,Q).

A ”better” PCP is one in which r and q are small: the idea is to verify that the entire proof is correct
while only reading a few bits from it. This hints that the proof should be encoded in some special way,
so that a random local view of the proof tells us something about its correctness (a global property). We
tell a small tale that might help with understanding this paradigm, and warn that this is far from how it is
actually used (in complexity theory):

Tale 2.1. Alice wishes to compute the answer to a very difficult question, one that is infeasible to compute
on her own personal computer. Amazon offers to run the computation for her on their powerful computers
(for a small fee). But how can she be sure that they actually ran the computation and didn’t simply say
”True”? She could ask for the entire transcript of the computation, but in order to verify that they did not
cheat in any step she must verify it in its entirety, which is at least as difficult as running the computation
herself! Instead, she asks Amazon for a special encoding of the proof (a probabilistically checkable proof )
that proves that their answer is correct. Sure, computing the proof might be difficult, but they have very
strong computers, and once they send her the proof she can run the verifier (which is far more efficient than
the computation itself) to verify the computation with a high degree of certainty (as high as she wishes, see
Exercise 2.1).

Exercise 2.1 (Soundness amplification). Prove that if L has a PCP system with verifier V , then for all t ∈ N,
the rejection probability in the soundness condition can be amplified to to 1− 2−t at the cost of a t-factor
increase in randomness and query complexities. Guidline: Consider the machine V t that emulates t runs of
V (with independent coins for each run) and accepts if and only if all emulated runs accepted.

2.1 An example

It might be helpful to see a ’toy’ PCP in order to internalize its definition.

Definition 2.2 (gap3SAT). gap3SAT is the problem of deciding 3CNF formula satisfiability under the promise
that the input formula is either satisfiable, or that no assignment satisfies more than half of its clauses. That
is, φ is a NO-case of gap3SAT if no assignment satisfies more than half of its clauses simultaneously, and is a
YES-case if it satisfiable.

A peculiar problem, but interesting nonetheless (see 2.3). We construct a PCP system for it.

Algorithm 2.1. Given access to an input formula φ and proof oracle π, the PCP verifier for gap3SAT
samples a uniformly random clause C of φ, then reads the assignments for the three variables that appear in
C and accepts if and only the assignment satisfies C.

Exercise 2.2. Prove that the above algorithm is a PCP verifier for gap3SAT.

While the above example is indeed a PCP system, it does not encapsulate the main idea underlying useful
PCPs, which is determining a global property (correctness of a proof) while making a few local observations
(queries to the proof).

3



2.2 The power of PCPs

So we have a new and interesting proof system, and immediately how powerful it is: can it do something
that NP proof systems can’t do, or vice-versa? When reasoning about PCPs we must always keep in mind
the resources available to them. The following observations are somewhat immediate:

Exercise 2.3. Prove the following:

• PCP (O (1) , poly) = NP (Exercise)

• PCP (log, O (1)) ⊆ NP (Exercise. Guideline: the NP-witness should be all possible answers given to
the verifier when provided with a correct proof).

In this course we will prove NP ⊆ PCP (poly, O (1)) by constructing a clever PCP system for an NP-
complete language. Astoundingly, NP proof systems are encompassed by even weaker PCP systems, as the
remarkable result NP ⊆ PCP (log, O (1)) (which bears the well-earned name of the PCP theorem) is also
known to be true. The latter is much more difficult to obtain: it was the culmination of a series of cutting-
edge works that involved the construction of other cunning PCP systems, and some other remarkable ideas.
This ”settles” the inquiry into the power of PCP systems (compared to NP proof systems)

Theorem 2.1 (The PCP theorem).
NP = PCP (log, O (1))

However, PCPs continue to yield many useful results in other fields (such as cryptography and distributed
algorithms) and their nature is still studied extensively.

2.3 A different view on the PCP theorem (if time permits)

In this course we will be study PCPs (and their power) as proof systems. In this section we show that
PCPs themselves can be viewed as ”combinatorial” decision problems, in a way. In fact, this perspective has
yielded an alternative (and arguably simpler) proof of the PCP theorem, years after its original proof!

Definition 2.3 (ε−gapqCSP). The q-ary constraint satisfaction problem: Given constraints F = {f : {0, 1}q → {0, 1}},
is there x ∈ {0, 1}q that satisfies the constraints, i.e. that f (x) = 1 for all f ∈ F?

The q-ary constraint satisfaction problem with gap ε (ε−gapqCSP) is the above problem under the promise
that the input constraints are either either satisfiable, or that no assignment satisfies more than an ε-fraction
of them.

Claim 2.1. The PCP theorem holds if and only if ε−gapqCSP is NP-hard.

Proof. Assume that NP ⊆ PCP (log, q). Then there exists a PCP verifier V for SAT. We prove that
0.5−gapqCSP for some q. A formula φ of length n is reduced to an instance of 0.5−gapqCSP as follows. For

any R ∈ {0, 1}O(log(n))
we define a constraint VR : {0, 1}q : {0, 1} by letting VR (a1 · · · aq) = 1 iff V accepts

φ upon sampling coins R and receiving a1, . . . , aq as answers to its queries. Completeness and soundness
of the reduction follow from completeness and soundness of the PCP. The reduction is efficient because
computing each constraint requires emulating V on 2q = O (1) inputs (and each emulation takes poly (n)
time), and there are a total of 2O(log(n)) = poly (n) constraints to compute.

Now assume that ε−gapqCSP is NP-hard. We construct a PCP system for SAT as follows. Fix a formula
φ (an instance of SAT), and let F be the result of its reduction to an instance of ε−gapqCSP. The PCP
verifier V expects a satisfying assignment π ∈ {0, 1}q to F as proof, and will simply uniformly sample a
constraint in F and check that it’s satisfied by π. Completeness is immediate, and to get soundness 1/2
(instead of ε) we can use 2.1. Efficiency of V follows from the efficiency of the reduction, and notice that V
makes q queries to the proof and uses log (|F |) = O (log (n)) randomness.

Exercise 2.4. Prove that (0.5-)gap3SAT is NP-hard if and only if ε−gapqCSP is NP-hard for some ε > 0.

4



Part II

Monday, September 3rd 2018
The task of a PCP is to allow verification of an entire proof by reading only a few random bits of it. In other
words, we must decide a global problem while having access only to a small local view. This requires some
special encoding of witnesses. Underlying a construction of such a code is a beautiful mathematical idea.

Boolean functions are all around us, if we look close enough:

• A formula is a Boolean function mapping assignments to truth values.

• A property of a graph (such as bipartiteness or Hamiltonicity) is a Boolean function that outputs 1 iff
the graph (as an adjacency matrix) has the property.

• Voting rules are Boolean functions: democracy is the majority function, dictatorship is the indicator
function.

In this lesson we will learn a new way to look at Boolean functions, showing us a powerful way to reason
about computational problems. [O’D14] is an excellent place to look for further reading.

3 The geometry of Boolean functions

Remark 3.1. Usually we think of bits as taking values in {0, 1}: 0 means ”False” and 1 means ”True”.
Equivalently (or isomorphically), from this point onwards we decide that bits take values in {±1}, with 1
meaning ”False” and −1 meaning ”True”. This unconventionality will make our notation much prettier
later, though mathematically all will be equivalent.

The space of real-valued functions on n bits is R{±1}n ∼= R2n . The standard inner product of two
functions f, g as vectors in that space is given by 〈f, g〉 =

∑
x∈Zn

2
f (x) g (x). Normalizing, the inner product

of two functions is the expectation of their product on a uniformly random input:

〈f, g〉 := 2−n
∑

x∈{±1}n
f (x) g (x) = E

x←{±1}n
[f (x) g (x)] (1)

3.1 An orthonormal basis of multiplicative functions

With an inner product in place, we move on to the natural task of finding an orthonormal basis. An
immediate observation is that since the inner product is a scaling of the standard one, then an appropriate
scaling of the standard basis2 forms an orthonormal basis.

We construct another, more useful orthonormal basis. For any I ⊆ [n], the Ith parity function χI :
{±1}n → {±1} is χI (x) :=

∏
i∈I xi.

3

Claim 3.1. The 2n parity functions form an orthonormal basis to the vector space of Boolean functions.

Proof. Since the space has dimension 2n, it suffices to show orthonormality. For all I, J ,

〈χI , χJ〉 = E [χI (x)χJ (x)] = E

∏
i∈I

xi
∏
j∈J

xj

 = E

 ∏
k∈I4J

xk

 =

{
1 if I = J

0 if I 6= J
(2)

We used the fact that xk · xk = 1 for the third equality, and that parity of a uniformly selected (nonempty)
sequence of bits is equally likely to be ”True” or ”False”.

2Recall that the standard basis of {±1}{±1}n is the family of indicator functions {1x}x∈{±1}n where 1x (y) = −1 iff x = y
3The product of zero elements is defined to be 1.

5



As with any orthonormal basis, any function can be uniquely decomposed to linear combination of
its elements f =

∑
I⊆[n] 〈f, χI〉χI . This decomposition is known as the Fourier decomposition, and the

coefficient 〈f, χS〉 =: f̂ (S) is called f ’s Ith Fourier coefficient. Sometimes we can say things about f just
by looking at its Fourier coefficients.

3.2 Some examples for the usefulness of the Fourier decomposition

It is immediate that the mean of f is its ∅th (”first”) coefficient: E [f (x)] = 〈f, χ∅〉 = f̂ (∅).

Claim 3.2 (Parseval’s equality).

〈f, f〉 =
∑
I

f̂ (I)

Proof.

〈f, f〉 =

〈∑
I

f̂ (I)χI ,
∑
J

f̂ (J)χJ

〉
=
∑
I,J

f̂ (I) f̂ (J) 〈χI , χJ〉 =
∑
I

f̂ (I)
2

Corollary 3.1. Using Parseval’s equality,

1. Var [f ] := E
[
f2 (x)

]
− E [f (x)]

2
=
∑
I⊆[n],I 6=∅ f̂ (I)

2

2. For any Boolean f ,
∑
I f̂ (I) = E

[
f (x)

2
]

= 1

Exercise 3.1 (Plancheral’s equality and the covariance). Prove 〈f, g〉 =
∑
I f̂ (I) ĝ (I), and use that to express

the covariance of f and g in terms of their Fourier coefficients.

4 Multiplicative Boolean functions

So far we’ve only viewed Boolean functions as glorified 2n-dimensional real vectors (and still, we’ve learned
quite a lot). Recall that the domain of these functions is the vector space {±1}n, with pointwise multiplication
corresponding to vector addition. Boolean functions are then functions from {±1}n to its underlying field
({±1}). We’re particularly interested in Boolean functions that happen to be linear forms, which in our case
means that they are multiplicative4. The parity functions (the orthonormal basis extensively used above)
were all multiplicative, and it turns out that they are the only multiplicative Boolean functions.

Claim 4.1. f : {±1}n → {±1} is multiplicative if and only if there exists I ⊆ [n] such that f = χI .

Proof. Recall that we are working above the field ({±1} ,×,∧).5 The standard inner product above {±1}n
is x � y :=

∏n
i=1 xi ∧ yi (this proof is the only time we will use this inner product). Riesz’s representation

theorem states that f : {±1}n → {±1} is multiplicative if and only if there exists u ∈ {±1}n such that
f (x) = x� u for all x. Notice that for all u ∈ {±1}n,

x� u =

n∏
i=1

xi ∧ ui =
∏

i:ui=−1
xi

Mapping each u ∈ {±1}n to χI for I = {i |ui = −1} ⊆ [n], we have a bijection between the space of
multiplicative Boolean functions and the set of parity functions.

4f is multiplicative if f (xy) = f (x) f (y), where xy denotes the pointwise multiplication of vectors x and y
5∧ denotes the logical AND operation: a ∧ b = −1 iff a = b = −1, for all a, b ∈ {±1}

6



Simpler proof. Let Mn denote the space of multiplicative Boolean functions. Mn is dual to {±1}n which
is of dimension n, hence the dimension of Mn is n. An n-dimensional space over a field of size 2 has 2n

elements, hence the 2n parity functions are the only elements in Mn.

So we were well acquainted with the multiplicative functions all along! They will accompany us for the
rest of our journey.

4.1 The Hadamard code

We’re trying to construct an encoding of witnesses in a way that will allow us to verify their correctness by
reading only a few bits from their encoding. A prerequisite to this encoding is that different witnesses should
have very different encodings. Otherwise, a single difference in the witness (for example the assignment to
a certain variable) would likely go undetected if we only read a few random bits!

If we had a set of words that are very different, we could assign each witness a different word, satisfying
the necessary property above. Let’s formalize things a bit.

Definition 4.1 (Hamming distance). The (relative) Hamming distance of two length m strings u, v ∈ {±1}m
is the number of locations in which they differ, normalized by their length:

δ (u, v) := P
i←[m]

[ui 6= vi]

.
The distance of a function f to a set of functions S is the minimal distance to any element of the set

δ (f, S) := min
g∈S∩Domain(f)

δ (f, g)

The distance from the empty set is always 1.
If δ (f, g) ≥ ε then we say that f is ε-far from g. If δ (f, g) ≤ ε then f is ε-close to g.

Claim 4.2. For any f, g : {±1}n → {±1}, 〈f, g〉 = 1− 2δ (f, g)

Proof.
E [f (x) g (x)] = P [f (x) = g (x)]− P [f (x) 6= g (x)] = 1− 2δ (f, g)

Corollary 4.1 (Distance of the Hadamard code). The distance between any two multiplicative Boolean
functions is 1/2, as they are orthonormal.

The multiplicative functions are far apart, so the encoding u 7→ 〈·, u〉, also known as the Hadamard
encoding,6 might work for us. Note that it is quite costly: words of lenght n are encoded by truth tables
which have length 2n, and exponential blowup! There are codes that have constant minimum distance
between codewords, and a much more reasonable (even linear) blowup in codeword length.

Large minimal distance is not the only thing we need in our encoding. If we wish for proofs to be
codewords, we also need a way to efficiently verify that the proof is a valid codeword (i.e. a multiplicative
function), and an efficient way to decode the proof back to the original witness. Since we are dealing with
PCPs, ”efficient” always means ”make local probes and be correct with high probability”.

6Named after Jacques Hadamard, this code was used by NASA to transmit photos from Mars back to Earth in 1971!

7



Part III

Tuesday, September 4th 2018
Our task for today is constructing efficient procedures for testing and decoding the Hadamard code.

5 A connection: property testing

The field of property testing is concerned with the superfast algorithms for approximate decision making.
In other words, algorithms that are highly efficient (in access to the input, and usually runtime as well) that
(mostly) decide problems correctly with high probability. Why ”mostly”? Property testers usually have
extremely restricted access to the input (for example, they may read only 4 bits) and so we ask of them to
decide whether an input has the property or is far (in Hamming distance) from having it.

Definition 5.1 (Tester). A property Π =
⋃
n∈N Πn is a set of Boolean functions where Πn = Π ∩

{f : {±1}n → {±1}}. A tester for property Π (with one-sided error) a probabilistic oracle machine T that
on input n ∈ N and ε > 0 and oracle access to f : {±1}n → {±1} satisfies

• Completeness: If f ∈ Π then T accepts with probability 1.

• Soundness: If f is ε-far from Πn then T rejects with probability at least 1/2.

We’re interested in the amount of locations in f read by T , and the number of random bits used by T .
q (n) (resp. r (n)) is the maximal amount of locations read (resp. random bits used) by T on inputs in
{g : {±1}n → {±1}}.

Research in property testing goes both in the positive direction (the construction and analysis of testers)
and the negative one (proving that certain problems have no efficient testers).

5.1 Property testing and PCPs

The above definition is reminiscent of that of PCPs, in that global decisions should be made correctly with
high probability, based only on local views of the input. Indeed, PCPs and property testers are strongly
entwined: property testers are often used by PCPs’ verification procedure, and on the other hand PCPs
can be seen as testers for the property of ”being a correct proof” (but this is pushing it). In fact, in the
construction of highly efficient PCPs (e.g., that of the PCP theorem) a creature that is a perfect blend
between PCPs and property testers (known as a PCP of Proximity) is used: such creatures are required to
verify whether an input is a YES case or is ε-far from being one.

6 Testing and decoding the Hadamard code

Remark 6.1. It’s worth noting that there are alternative proofs for the Hadamard code local tester [Gol18,
Section 2] that are not Fourier-analytic and result in a more general result.

6.1 Testing the Hadamard code

Algorithm 6.1 (The Hadamard code (local) tester). Given oracle access to a function f : {±1}n → {±1},
the tester

1. Samples x, y ← {±1}n uniformly and independently.

2. Queries f for the values f (x), f (y), f (xy).

3. Accepts if and only if f (x) f (y) = f (xy)

8



Claim 6.1. For all f : {±1}n → {±1}, the following holds:

• Completeness: If f is multiplicative, the tester accepts with probability 1.

• Soundness: If f is δ-far from multiplicative, the tester rejects with probability at least δ.

Exercise 6.1. Use the above claim to derive a tester for the property Mul = {f : {±1}n → {±1} | f is multiplicative}
that makes constant queries to its input and uses polyn randomness. Guideline: use soundness amplification
from lecture 1.

Proof of 6.1. We prove soundness. Let f : {±1}n → {±1}. The first step is a simple form of arithmetization:
we analyze a mathematical expression that is somehow related to the probability of rejecting f . Noticing
that

f (x) f (y) f (xy) =

{
1 if f (x) f (y) = f (xy)

−1 otherwise

We have

E [f (x) f (y) f (xy)] = P [f (x) f (y) = f (xy)]− P [f (x) f (y) 6= f (xy)]

= P [The test accepts f ]− P [The test rejects f ] = 1− 2P [The test rejects f ]

So our goal is to show that E [f (x) f (y) f (xy)] < 1− 2δ. We start by expressing that expectation in terms
of f ’s Fourier coefficients:

E [f (x) f (y) f (xy)] = = E
x,y

[(∑
I

f̂ (I)χI (x)

)(∑
J

f̂ (J)χJ (y)

)(∑
K

f̂ (K)χK (xy)

)]

= E
x,y

∑
I,J,K

f̂ (I)χI (x) f̂ (J)χJ (y) f̂ (K)χK (xy)


=
∑
I,J,K

f̂ (I) f̂ (J) f̂ (K) E
x,y

[χI (x)χJ (y)χK (xy)]

The parity functions are multiplicative =
∑
I,J,K

f̂ (I) f̂ (J) f̂ (K) E
x,y

[χI (x)χJ (y)χK (x)χK (y)]

x, y are independent =
∑
I,J,K

f̂ (I) f̂ (J) f̂ (K)E
x

[χI (x)χK (x)]E
y

[χJ (y)χK (y)]

=
∑
I,J,K

f̂ (I) f̂ (J) f̂ (K) 〈χI , χK〉 〈χJ , χK〉

The parity functions are orthonormal =
∑
I

f̂ (I)
3

(3)

Let f∗ be the multiplicative function closest to f . As we’ve seen, there must be I∗ ⊆ [n] such that f∗ = χI∗

is the I∗th parity function. Recall that

f̂ (I) := 〈f, χI〉 = 1− 2δ (f, χI) (4)

So f being closest to χI∗ of all multiplicative functions means that f̂ (I∗) is the largest of f ’s Fourier
coefficients. Thus, from (3)

|E [f (x) f (y) f (xy)]| ≤
∑
I

∣∣∣f̂ (I)
3
∣∣∣ ≤ f̂ (I∗)

∑
I

f̂ (I)
2

= f̂ (I∗) · 1 = 1− 2δ (f, χI∗)

Where we used the fact that
∑
I f̂ (I)

2
= 1 (seen in the previous lecture) and (4).

9



6.2 Decoding the Hadamard code

The ability to check that a given proof consists of some codeword is essential, but is not enough. We should
also be able to decode the original message (e.g. assignment to a formula) from a given codeword. In fact,
we need to do this ”locally”: since we need to read only a few bits from the message (reading it in its entirety
is too costly for a PCP), we need to be able to decode a few bits in the message by looking at only a few bits
in the codeword. This task (known as ”local decoding”) is quite simple in the Hadamard code: the message
u is encoded 〈·, u〉, so to read ui we need to read 〈ei, u〉.

But the key idea is to perform local decoding in the presence of noise. That is, given access to f a slightly
(uniformly) noised version of the codeword f̃ , output f̃ ’s value at a specific location x.

Algorithm 6.2 (The Hadamard code (local) decoder). Given oracle access to function f : {±1}n → {±1}
and location x ∈ {±1}n as explicit input, sample r ← {±1}n and output f (xr) f (r)

Claim 6.2. If f is δ-close to a multiplicative function f̃ and any location x ∈ {±1}n, the Hadamard decoder
errs (i.e. outputs a value other than f (x)) with probability at most 2δ.

Proof. The key observation is that for fixed x ∈ {±1}n and uniformly random r ← {±1}n, xr is distributed
uniformly in {±1}n (exercise). Then we note that

f̃ (xr) f̃ (r) = f̃ (xrr) = f̃ (x)

from multiplicativity of f̃ (and since rr is the all-ones vector), and additionally if f and f̃ agreed on both
xr and r then the decoder outputs the correct value, and each event occurs with all but probability δ by
definition of the Hamming distance. For those who prefer symbols to words:

P
r

[
f (xr) 6= f̃ (xr)

]
= P

r

[
f (r) 6= f̃ (r)

]
= δ

Therefore

P
r

[Error] = P
r

[
f (xr) f (r) 6= f̃ (x)

]
= P

r

[
f (xr) f (r) 6= f̃ (xr) f̃ (r)

]
≤ P

r

[
f (xr) 6= f̃ (xr) ∨ f (r) 6= f̃ (r)

]
≤ P

r

[
f (xr) 6= f̃ (xr)

]
+ P

r

[
f (r) 6= f̃ (r)

]
≤ 2δ

Exercise 6.2 (”Test and decode” (also known as self-correction)).

Algorithm 6.3. Fix an integer q. Given inputs x1, . . . , xq ∈ {±1}n and oracle access to function f : {±1}n →
{±1}:

1. Perform t (q) ≥ 1/ log (4q/ (4q − 1)) trials of Algorithm 6.1 using independent (”fresh”) randomness.
If any of these rejected, reject.

2. Uniformly sample r ← {±1}n. For all i ∈ [q] output f (xi + r)− f (r).

Suppose f is δ-close to a multiplicative function f̃ . Prove that with probability at least 1/2, Algorithm

6.3 either rejects or outputs f̃ (x1) . . . f̃ (xq). Guideline:

• If δ > 1/ (4q) then with probability at least 1/2 (over the coins of the trials of Algorithm 6.1) some
trial rejects. Hint: Upper bound the probability that all t independent trials accepted.

• If δ ≤ 1/ (4q) then with probability at least 1/2 (over the sampling of r), the algorithm outputs

f̃ (x1) . . . f̃ (xq). Hint: Lower bound using the union bound.

10



Part IV

Wednesday, September 5th 2018
In this final meeting we will construct and analyze an interesting PCP system for an NP-complete language
that makes a constant number of queries and uses polynomial randomness, giving usNP ⊆ PCP (O (1) , poly).

7 Quadratic equations over the field of two elements

The go-to (and first known) NP-complete language is SAT, whose YES-cases are satisfiable CNF formulae and
NO-cases are unsatisfiable ones. We define a different NP-complete language and construct a PCP system
for it, and notice that the choice of language is immaterial for our result, as long as the language is NP-hard:

Exercise 7.1. Prove that if there exists a PCP system of complexities q, r for some NP-hard language, then
NP ⊆ PCP (q, r).

Remark 7.1. We return to the representation of bits as elements of {0, 1}.

Definition 7.1 (QuadEq). QuadEq is the language of satisfiable quadratic equation systems over {0, 1}. A
quadratic equation system with m equations over n variables is represented as follows:

• Coefficients: An m× (n× n) block matrix A. For each k ∈ [m], let Ak denote A’s kth block.

• Free variables: A length m column vector b.

• Assignments: A length n column vector v. An assignment v is satisfies (A, b) when Avv> = b.

Formally, QuadEq :=
{

(A, b)
∣∣∃y Ayy> = b

}
.

Exercise 7.2. Prove that QuadEq is NP-complete.

8 Constructing the PCP: from ideal to real

The PCP itself is not too complicated, and could be prescribed without much motivation and have its
correctness analyzed fairly easily (given our work so far). However, we build it iteratively, initially making
several assumptions on the given proof, and gradually adding tests to remove each of the assumptions.
This section contains mostly motivating/intuitive descriptions of the construction, with only two ”formal”
technical claims which are used in the actual analysis (Section 9).

8.1 Round one: given a Hadamard encoding of an outer square

As much alluded previously, the PCP will include the Hadamard encoding to a satisfying assignment (or
rather, its outer square7). To see why the Hadamard encoding of (the square of) a satisfying assignment is
useful for our local-to-global task, recall the following:

Fact 8.1 (Distance of the Hadamard code). For all u 6= v ∈ {0, 1}k,

P
x←{0,1}k

[〈x, u〉 = 〈x, v〉] = 1/2

Exercise 8.1. For any c× d matrix A and column vectors v and a of lengths c and c respectively,

〈v,Aa〉 =
〈
A>v, a

〉
7The outer product of length n vectors u, v is the n × n matrix uv>, whose (i, j)th entry is uivj . The outer square of a

vector is its outer product with itself.

11



An assignment a is satisfying iff Aaa> = b iff
〈
·, Aaa>

〉
= 〈·, b〉

〈
A>·, aa>

〉
= 〈·, b〉. So assuming the

verifier is given access to the proof π1 =
〈
·, aa>

〉
, it would test that aa> = b by sampling a uniform

v ← {0, 1}m and checking that π1 (Av) = 〈v, b〉 (recall that the verifier has unlimited access to A and b). We
formalize this below:

Claim 8.1 (Satisfaction). For all v ∈ {0, 1}n

P
x←{0,1}m

[〈
Ax, vv>

〉
= 〈x, b〉

]
=

{
1 v satisfies (A, b)

1/2 else

Proof. If v satisfies (A, b) iff Avv> = b. Using Exercise 8.1: the case that v is satisfying is immediate, and
if Avv> 6= b then using the distance of the Hadamard code

P
x←{0,1}m

[〈
A>x, vv>

〉
= 〈x, b〉

]
= P
x←{0,1}m

[〈
x,Avv>

〉
= 〈x, b〉

]
= 1/2

However, we cannot assume that the given proof is an encoding of an outer square (or a even a codeword
at all). That is, the verifier should reject NOcases even when the given proof is not an encoding of an outer
square.

8.2 Round two: given a Hadamard encoding of some vector and its outer square

So far, the verifier expects the proof to be a Hadamard encoding of a length n2 message that is an outer
square of a length n message (an assignment). Of all Hadamard codewords (for length n2 messages), only
a negligible fraction (2−n(n−1)) encode messages that are outer squares of some assignment. To remove this
assumption, the verifier now expects not only for the Hadamard encoding for the assignment’s outer square,
but also for the Hadamard encoding of the assignment itself. So now the proof has two parts: π = (π1, π2)
where π1 should be the Hadamard encoding of the assignment, and π2 is the Hadamard encoding of the
assignment’s outer square. If π1 and π2 are as expected (one encodes the outer square of the other’s message),
we say they are consisted.

Testing the consistency of π1 and π2 relies on the following fact:

Fact 8.2. For any x, y, v ∈ {0, 1}n,
〈x, v〉 〈y, v〉 =

〈
xy>, vv>

〉
Similarly to the previous test, the verifier simply checks that this equation on random x, y.

Claim 8.2 (Consistency). For all v ∈ {0, 1}n and ν ∈ {0, 1}n
2

P
x,y←{0,1}n

[
〈x, v〉 〈y, v〉 =

〈
xy>, ν

〉]
=

{
1 ν = vv>

1/2 ν 6= vv>

Proof. If ν = vv> we use Fact 8.2. Otherwise, using Fact 8.2 and the fact that if x, y ← {0, 1}n are uniformly

sampled then xy> is uniformly distributed in {0, 1}n
2

, we have

P
x,y←{0,1}n

[
〈x, v〉 〈y, v〉 =

〈
xy>, ν

〉]
= P
x,y←{0,1}n

[〈
xy>, vv>

〉
=
〈
xy>, ν

〉]
= 1/2

Where the last equality uses the Hadamard code’s distance.

12



8.3 Final round: given any proof

The given proof π should be the Hadamard encoding of a satisfying assignment π1 followed by the Hadamard
encoding of its outer square π2. As long as both are Hadamard codewords of the required lengths, the verifier
is complete and sound: it always accepts satisfiable equation systems with their correct proofs (i.e. when the
given proof is as in the previous sentence), and rejects unsatisfiable equation systems with high probability.
The required modification to make the verifier work in the general setting is, unsurprisingly, using the ”test
and decode” method (which effectively means adding linearity tests on π1 and π2), ”reducing” the case of
the general proof to the case when the proof consists of two codewords.

9 NP ⊆ PCP (poly, O (1))

Algorithm 9.1 (The Hadamard-based PCP verifier). The verifier gets equation system (A, b) as explicit
input and oracle access to proof π = (π1, π2). Letting π̃1 and π̃2 be the linear functions closest to π1 and π2
respectively, the verifier runs the consistency and satisfactions tests on π1 and π2 using the ”test and decode”
method. Explicitly, the verifier first performs (several trials of) linearity tests on π1 and π2. It then performs
the consistency and satisfaction tests on π̃1 and π̃2 using the local decoding algorithm. That is, when the
verifier needs π̃1 at location x ∈ {0, 1}n, r ← {0, 1}n is uniformly sampled and the value π1 (x+ r)− π1 (r)
is used (and similarly for π̃2).

1. Linearity tests: Repeat the following 6 > 1/ log (8/ (7)) times: Uniformly sample x, y ← {0, 1}n and

u, v ← {0, 1}n
2

and check that

π1 (x) + π1 (y) = (π1 (x+ y)) , π2 (u) + π2 (v) = π2 (u+ v)

2. Consistency test: Uniformly sample x, y ← {0, 1}n and check that

π̃1 (x) π̃1 (y) = π̃2
(
xy>

)
3. Satisfaction test: Uniformly sample v ← {0, 1}n

2

and check that

π̃2
(
A>v

)
= 〈v, b〉

Theorem 9.1. The Hadamard-based PCP system is complete and sound. Its verifier makes a constant
number of queries to the proof oracle, uses a polynomial number of coins, and runs in polynomial time.

Proof. Leaving completeness and efficiency to the reader, we prove soundness. Let (A, b) be an unsatisfiable
equation system. Recall (from the ”test and decode” exercise) that if the linearity tests do not reject (which
would cause the verifier to reject), then the two queries made to π̃1 and π̃2 (each) using the local decoding
algorithm are successful with probability at least 1/2. That is, with probability at least 1/2, the verifier
perfectly emulates the consistency and satisfaction tests on π̃1 and π̃2.

In that case (that all local decoding were successful), let a ∈ {0, 1}n and α ∈ {0, 1}n
2

such that π̃1 = 〈·, a〉
and π̃2 = 〈·, α〉. If α 6= aa> then the consistency test rejects with probability at least 1/2. Otherwise,
α = aa>, but a is not a satisfying assignment (since (A, b) are unsatisfiable) and then the satisfaction test
rejects with probability at least 1/2.

All in all, with probability at least (1/2)
2

= 1/4, either a linear test rejects, or all local decodings
succeeded and then the consistency or satisfaction tests reject.

13



References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge, 2009.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, Cambridge; New York, 2008. OCLC: ocn192050142.

[Gol18] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, Cambridge, United
Kingdom ; New York, NY, USA, 2018.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York, NY, 2014.

14


	I Sunday, September 2nd 2018
	Prelude: Computation and Verification
	Probabilistically Checkable Proofs

	II Monday, September 3rd 2018
	The geometry of Boolean functions
	Multiplicative Boolean functions

	III Tuesday, September 4th 2018
	A connection: property testing
	Testing and decoding the Hadamard code

	IV Wednesday, September 5th 2018
	Quadratic equations over the field of two elements
	Constructing the PCP: from ideal to real
	NPPCP( poly, O( 1 ) )


