Pseudointelligence: A Unifying Framework for Language Model Evaluation

Shikhar Murty*, Orr Paradise*, Pratyusha Sharma*

The Turing Test

\$Hytd

&4hyh

Human

Evaluator

Human

/ AI?

Human

Al Agent

Case 1: Obi is calling the coin based only on the info available to him from eye sight.

Case 2: Obi has access to sensors that measure the initial state of Tessa's coin, and a computer that performs complex calculations in milliseconds.

Pseudorandomness

Definition [Yao '82, Blum Micali 84] Distribution \mathcal{P} is ε -pseudorandom against a class of distinguishers D if for every $d \in D$:

$$\begin{vmatrix} \Pr_{x \leftarrow \mathcal{P}} [d(x) \text{ accepts}] - \\ \Pr_{x \leftarrow \mathcal{U}} [d(x) \text{ accepts}] \end{vmatrix} < \epsilon.$$
Unif. distr. over a finite set

- Decades of extensive research
- At the foundation of modern crypto

Pseudointelligence: Meta-evaluation meets pseudorandomness

Are we evaluating Language Models Correctly?

Casting current LM evaluation into pseudo-intelligence

→ accept/reject

Dynamic / Adversarial Evaluation:

- L_E uses auxiliary model \hat{g} to search for challenge examples in set seed S.
- Based on the quality of \hat{g} , we can get increasingly harder datasets.
- Central resources: size of seed set, complexity of \hat{g} .

Model-based evaluation

- LMs are used to generate evaluation sets based on templates.
- Optionally, model generated test sets can be filtered out by human raters.
- Central resources: size of LM, number of queries to human raters.

Self-evaluation:

→ accept/reject

- Here the model is pitted against itself, serving as both the evaluator and the generator.
- Our framework makes self-evaluation invalid since L_E and L_G must receive i.i.d training samples, so self-evaluation cannot be used as claim of model capability.

FAQs

Learner expressivity
 Forward-pass complexity

Differences from the Turing Test?

Pseudointelligence is a complexity-theoretic analogue of the Turing Test, though evaluators need not be human.

Differences from PAC Learning?

PAC learning only has a learner.
Pseudo-intelligence is defined with respect to a learner, **and** a (learned) evaluator that operates over multiple non i.i.d rounds.

What's the optimal evaluator?

There is no One True Evaluator.

...then what is missing in LM evaluation?

Evaluators whose resources are tied-to (and scale up with) the resources of the LM. Proven or empirically-verified scaling laws.