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Pseudointelligence: Meta-evaluation meets pseudorandomness
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Casting current LM evaluation into pseudo-intelligence FAQs
Dynamic / Adversarial Evaluation: Differences from the Turing Test?
R Pseudointelligence is a complexity-theoretic
- Ly uses auxiliary model g to search for challenge examples in set seed S. analogue of the Turing Test, though evaluators
- Based on the quality of 2, we can get increasingly harder datasets. need not be human.

- Central resources: size of seed set, complexity of 2.
Differences from PAC Learning?

PAC learning only has a learner.
Pseudo-intelligence is defined with respect to
a learner, and a (learned) evaluator that
operates over multiple non i.i.d rounds.

Model-based evaluation

- LMs are used to generate evaluation sets based on templates.
- Optionally, model generated test sets can be filtered out by human raters.

- Central resources: size of LM, number of queries to human raters. _
What’s the optimal evaluator?

Self-evaluation: There is no One True Evaluator.

- Here the model is pitted against itself, serving as both the evaluator ...then what is missing in LM

and the generator. o o evaluation?

- Our framework makes self-evaluation invalid since Ly and L must Evaluators whose resources are tied-to (and
receive i.i.d training samples, so self-evaluation cannot be used as scale up with) the resources of the LM. Proven

claim of model capability. or empirically-verified scaling laws.



